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S.S. Mannaa and K. Bhattacharya

Satyendra Nath Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata-700098, India

Received 12 June 2006 / Received in final form 3 November 2006
Published online 3 February 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. A globally driven self-organized critical model of earthquakes with conservative dynamics has
been studied. An open but moving boundary condition has been used so that the origin (epicenter) of
every avalanche (earthquake) is at the center of the boundary. As a result, all avalanches grow in equivalent
conditions and the avalanche size distribution obeys excellent finite size scaling. Though the recurrence
time distribution of the time series of avalanche sizes obeys well both the scaling forms recently observed
in analysis of the real data of earthquakes, it is found that the scaling function decays only exponentially
in contrast to a generalized gamma distribution observed in the real data analysis. The non-conservative
version of the model shows periodicity even with open boundary.

PACS. 05.65.+b Self-organized systems – 91.30.Dk Seismicity – 64.60.Ht Dynamic critical phenomena –
89.75.Da Systems obeying scaling laws

Because of the devastating effects of earthquakes on hu-
man life and wealth, understanding the properties, behav-
ior and statistics of earthquakes as well as their predic-
tions continue to remain a challenge to scientists. Over a
long time attempts have been made to explain the earth-
quake dynamics as a scale invariant process. For exam-
ple, Gutenberg-Richter distribution law for the earthquake
magnitudes [1], Omori’s law for the frequencies of after
shocks [2] as well as recent analysis of recurrence time
distributions [3–6], fractal distribution of epicenters [7,8],
power law distribution of the spatial distances between
epicenters of successive earthquakes [9], and associating a
scale-free network with the temporal behaviour of earth-
quakes [10], all support the view point that earthquakes
are indeed scale invariant. On the other hand theoretically,
the well-known Burridge-Knopoff (BK) model views the
slow creeping of the continental plates along the fault lines
as a stick-slip process [11]. About two decades ago, Bak
et. al. while introducing the idea of Self-Organized Crit-
icality (SOC) suggested that the phenomenon of earth-
quakes may be looked upon as a SOC process since there
is nobody to control the nature to generate long range
spatio-temporal correlations or scale-invariance [12,13].

In this paper we study a SOC model of earthquakes
and present numerical evidence to argue that within the
frame-work of this model the earthquake dynamics is in-
deed scale-invariant. In particular, we show that the two
recently used scaling procedures for analyzing the real
data of earthquakes work well for our model.
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The well-known Gutenberg-Richter (GR) law says that
the number of earthquakes N(m) of magnitude at least m
decays exponentially with m as:

log N(m) = c1 − c2m. (1)

On the other hand magnitude of an earthquake varies
logarithmically with the amount of energy released:
log E(m) = c3 + c4m. Eliminating m one gets, log N =
c1− (c2/c4) log E +(c2c3)/c4. This implies that the cumu-
lative number N(E) of earthquakes of energy at least E
decays like a power law as:

N(E) ∝ E−b (2)

where b = c2/c4. Therefore the probability density of
earthquakes varies as: Prob(E) ∝ dN(E)/dE ∝ E−1−b.
Another important empirical observation is the Omori law
which states that the frequency of after shocks decays with
time as a power law: D(t) ∝ t−γ .

Let the earthquakes be measured with an accuracy
mc so that all earthquakes of magnitude greater than
mc = log10(sc) are detected and let them be ordered in a
time sequence so that the ith earthquake occur at the time
ti. The recurrence time is then defined as τi = ti − ti−1.
Bak et. al. analyzed the real data of the earthquakes that
occured in Southern California by dividing this region into
a grid of cell size L degrees. Considering main events,
after shocks and fore shocks on the same footing Bak,
Christensen, Danon and Scanlon (BCDS) claimed that the



494 The European Physical Journal B

recurrence time follows an universal scaling function [3]

Prob(τ, L, sc) ∼ τ−γF(τ
Ldf

sb
c

) (3)

where b, γ and df are the GR exponent, Omori exponent
and the fractal dimension of the distribution of epicen-
ters and F(x) is an universal scaling function. The scaling
factor sb

c/Ldf is the mean recurrence time for the earth-
quakes having sizes at least sc which originated from a cell
of size L. On the other hand Corral used a single param-
eter R for scaling, which is the rate of occurrence of the
earthquakes [5,6]:

Prob(τ, R) ∼ RG(Rτ) (4)

where G(x) is another universal scaling function having
the form of a generalized Gamma function.

Bak and Tang devised a SOC model of earthquakes
by studying a simpler version of the two-dimensional BK
model [13]. The essential simplification is in treating the
accumulated local force as a scalar as well as consider-
ing the two-dimensional system of blocks located at fixed
positions at the sites of a regular lattice like a discrete
space-time but continuous spin cellular automaton.

Olami, Feder and Christensen (OFC) studied the non-
conservative version of the SOC model of earthquakes [14].
Every site of a square lattice is assigned a continuous vari-
able f representing the accumulated local force at that
site. The system is globally driven, implying that in the
inactive state of no avalanches (earthquakes) the forces at
all sites increase steadily with an uniform rate. A thresh-
old value fc of the forces exists for the stability of all sites.
A site relaxes with probability one when fi,j ≥ fc. In a re-
laxation the force at the site is reset to zero and α fraction
of the force is transmitted to each neighbor:

if, fi,j ≥ fc, then fi,j → 0 and
fi±1,j±1 → fi±1,j±1 + αfi,j . (5)

Consequently, forces at some of the neighbors may exceed
the threshold and in turn they also relax — thus a cascade
of site relaxations propagates in the system, causing an
avalanche. The parameter α varies continuously within the
range 0 < α ≤ 1/4 [14]. The dynamics in OFC model is
conservative for α = 1/4 and non-conservative for α <
1/4. A critical value of αc such that the system is in a
sub-critical state for α < αc and in a critical state for
α > αc has been suggested for αc ≈ 0.05 [14], around
0.20 [15], =1/4 [16] and a multifractal scaling in [17].

We argue that assigning a fixed boundary in the SOC
models of earthquakes is rather artificial. In nature there is
no fixed boundary which absorbs vibrations of the earth-
quakes. The seismic waves propagate in all directions till
they slowly damp out at long distances. Presence of a fixed
boundary introduces a strong non-uniformity in the sys-
tem i.e., all measurable quantities show strong dependence
on the distance from the boundary. This effect is present
in both conservative as well as non-conservative versions
of the OFC model, but it is so strong in the latter case

that even arriving at the stationary state becomes very
difficult [15]. It is therefore desirable that all avalanches
are on the same footing with respect to the boundary and
at the same time the origin of the avalanche should be at
the farthest interior point of the system.

This argument prompted us to formulate a new bound-
ary condition. Here, a globally fixed set of lattice sites does
not constitute the boundary for all avalanches. In contrast,
boundaries are different for different avalanches depending
on the positions of the avalanche origins, and its position
is constantly moved from one avalanche to the other.

First we make the square lattice periodic in both direc-
tions to get the topology of a torus. An arbitrary random
distribution of forces fi,j , drawn from a set of indepen-
dent and identically distributed random numbers within
{0, 1} are assigned at all L2 sites. The maximum force
fmax among all L2 sites is found to be at some specific lo-
cation (io, jo) and the difference from the threshold force
is estimated: δ = fc−fmax. Forces at all sites are then en-
hanced by δ so that at the origin (io, jo) the force reaches
the threshold fc. The avalanche then starts from the ori-
gin and a cascade of relaxations propagates away from the
origin.

Now, for this avalanche, we select a specific set of lat-
tice sites as the boundary such that the origin is at the
center position with respect to these boundary sites. More
precisely, on a L × L square lattice and with respect to
the origin located at (io, jo) the boundary sites form two
transverse rings on the torus defined by one column and
one row of lattice sites as (Fig. 1):

i = io + L/2 mod(L) and
j = jo + L/2 mod(L). (6)

When a site adjacent to the boundary relaxes, it transfers
αfi,j force to every non-boundary neighbor but no force to
the neigbor on the boundary. Therefore corrseponding to
each boundary neighbor αfi,j disappears from the system
and in this way the system looses force.

Since the system is otherwise periodic in all directions
all lattice sites are equivalent. Consequently all avalanches
are also equivalent since all of them grow in similar sur-
roundings. In a way this is similar to elimination of surface
effects in a finite size system. Surface profiles for the av-
eraged force per site 〈f〉, number of avalanche origins at
each site 〈e〉 and average size of the avalanche per site 〈s〉
show uniform flat surfaces but within a very small fluc-
tuation for all sites within the lattice L × L. We are also
studying other numerically challenging problems of SOC
using moving boundary condition.

Since in a single relaxation, the force at the site is
reduced to zero, it creates the possibility that more than
one site (typically two) can reach the threshold simultane-
ously. However, such situations occur with very low prob-
ability and in these cases we choose randomly one of the
sites as the origin and construct boundaries with respect
to this site but relaxation starts from both the unstable
sites. Since the forces are continuously varying real num-
bers, the precision of the numbers is important as observed
in [18]. To ensure that the system has indeed reached the
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Fig. 1. Four examples show the positions of the avalanche
origins (shaded circle) and the corresponding boundaries sites
(filled circles) on a 8 × 8 square lattice.

stationary state we calculated the average avalanche size
〈s(L)〉 for every 10 000 avalanches and monitored its vari-
ation with time. This quantity first grows with time but
eventually saturates. Repeating this calculation for differ-
ent system sizes it is observed that the relaxation time
grows as L2.

First we present the results for the conservative case
of α = 1/4. The avalanche size s is the total number of re-
laxations in an avalanche and represents the total energy
release in our model earthquake. Prob(s, L) is the proba-
bility that a randomly selected avalanche has size s. While
for the infinitely large system size the distribution should
indeed be a simple power law, for the finite size systems,
a finite size scaling of the distribution is required:

Prob(s, L) ∼ L−µH(s/Lν) (7)

where the scaling function H(x) ∼ x−1−b for x → 0 and
for x 	 1, H(x) decreases faster than a power law so
that, b = µ/ν − 1. The system size dependence of the
average avalanche size and durations are observed to be
〈s(L)〉 ∼ L2.26 and 〈T (L)〉 ∼ L0.63. This shows that the
avalanche dynamics is sub-diffusive. We believe that this is
due to fact that force is always reset to zero in a relaxation
which initiates more relaxations and thus increases the size
of the avalanche.

In Figure 2a we show the plot of avalanche size dis-
tribution for three different system sizes L = 64, 128 and
256 on the double logarithmic scale. All of them have very
large portions of straight regions starting from very small
sizes to the cut-off sizes. A scaling of the data with an
excellent data collapse is shown in Figure 2b yielding the
values of ν = 3.02 and µ = 3.78 giving b ≈ 0.26. Such a
good power law behaviour as well as the excellent finite
size scaling have been achieved only due to the moving
boundary condition where all lattice sites as well as the
avalanches are equivalent and have not been observed in
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Fig. 2. (Color online) The avalanche size distributions for
three different system sizes L = 64 (black), 128 (red) and 256
(blue) have been plotted on a double logarithmic scale in (a).
The finite size scaling of the same data is shown in (b).

fixed boundary cellular automata models of earthquakes
before [14,15].

Since we have assumed that forces at all sites increase
uniformly at unit rate, the time difference between succes-
sive avalanches is exactly equal to δ. With this definition,
the recurrence time distribution (RTD) Prob(τ, sc, L) has
been calculated for different system sizes L as well as dif-
ferent sc values. The effects of sc and L on RTD are com-
petitive. For sc = 0, the RTD is simply the distribution
of force increments δ only. Since the probability of occur-
rence of an avalanche of size at least sc decreases with sc,
for a fixed L the recurrence time increases with increasing
sc. On the other hand for a fixed sc, since the maximum of
the avalanche sizes increases with L, the probability of oc-
currence of an avalanche of size at least sc increases with
increasing L. Consequently the recurrence time decreases
with increasing L.

In Figure 3a we show an unified scaling of twelve dif-
ferent plots with the minimal value of the avalanche sizes
measured sc = 0, 8, 64 and 512 for three different sys-
tem sizes L =64, 128 and 256. Logarithmic binning is
used for coarse-graining of the data. The average wait-
ing time 〈τ(L, sc)〉 is calculated for each plot. Following
equation (4) we then scale every plot with correspond-
ing 〈τ(L, sc)〉 = 1/R and observe an excellent collapse of
all twelve plots. This confirms the Corral scaling in our
model. We tried to verify the Corral scaling form:

G(x) ∼ x−a1 exp(−a2x
a3) (8)

and obtained a1 = 0.003, a2 = 1.02 and a3 = 0.99 com-
pared to a1 = 0.33, a2 = 0.63 and a3 = 0.98 observed
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Fig. 3. (Color online) Scaling of the waiting time distribution
by the (a) Corral method (b) BCDS method. Symbols used
for: L = 64 (circle), 128 (square), 256 (triangle) and for sc = 0
(black), 8 (red), 64 (blue) and 512 (magenta). Values of the
scaling exponents used in (b) are df = 1.67 and b = 0.29.
The continuous line is the best fit by the functional form in
equation (8).

in [5]. The exponential tail in G(x) is consistent with the
Gamma distribution observed by Corral but the observed
power law decay component for small values of waiting
times is rather absent in our model.

To see if BCDS scaling is also valid for our model, we
plotted Prob(τ, L, sc)(sb

c/Ldf ) vs. τLdf /sb
c and obtained a

scaling form like:

Prob(τ, L, sc)
sb

c

Ldf
∼ F1

(
τ

Ldf

sb
c

)
. (9)

Here also we see a very good collapse of the nine sets
of data for three system sizes L = 64, 128 and 256 and
for sc = 8, 64 and 512. The scaling exponents that gave
the best collapse were tuned to df = 1.67 and b = 0.29.
The best fit with the functional form in equation (8) gives
a1 = 0.001, a2 = 3.21 and a3 = 0.99 again showing an
exponential tail similar to that obtained from real data
analysis [5] but without any power law component.

We therefore conclude that both the scaling forms used
by Corral as well as BCDS are valid for scaling of the RTD
data in our model. The scaling functions in both cases were
observed to be very close to simple exponential decay and
the power law part representing the RTD for small values
of the recurrence times turned out to be absent. This result
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Fig. 4. (Color online) The average recurrence time 〈τ (L, sc)〉
has been plotted for different values of sc and multiplied by the
system size dependent factor Ldf . On increasing system size
the plot approaches to the variation mentioned in equation (10)
with b = 0.30.

may also be compared with two recent analytical calcula-
tions: (i) a pure exponential decay of the RTD [19]; (ii)
an approximate unified law compatible with the empirical
observations incorporating the Omori law [20].

For Corral’s analysis it is the single parameter scaling
i.e., the mean recurrence time 〈τ(L, sc)〉. However this pa-
rameter in turn also depends jointly on the another two
competitive parameters of the distribution, namely the
system size L and the avalanche size cut-off sc in the fol-
lowing way:

〈τ(L, sc)〉 ∝ sb
c

Ldf
. (10)

To check if it is really true we plotted 〈τ(L, sc)〉Ldf with
respect to sb

c for L = 32, 64, 128 and 256 using df = 1.67
in Figure 4. A nice collapse of the data for the four differ-
ent system sizes are observed for small and intermediate
values of sc. Collapse of the data between two successive
system sizes increased with the system size. The slope of
the curve in the longest straight region corresponds to
b = 0.30.

Finally, we studied the OFC model using values of
α < 1/4 again on a square lattice of size L using open
but moving boundary condition. To our surprise we see
that the dynamics become periodic after a short relaxation
time of the order of L2. This is checked by looking at the
‘hamming distance’. Starting from a random distribution
of forces as before we skip some 10L2 initial avalanches
and store the force configuration in an array fstore. After
that at the end of every avalanche we calculated the maxi-
mal site difference max|fi,j − fstore(i, j)| and measure the
time when this maximal difference becomes less than a
small number ε = 10−12. The periodic time is of the order
of L2 but less than it, and found to depend on the initial
distribution of force values.

To summarize, we have studied in a model the scale
invariance properties observed in the real data of earth-
quakes over last several years by different groups. More
specifically we studied a self-organized critical model of
earthquakes using a square lattice cellular automaton.



S.S. Manna and K. Bhattacharya: Self-organized critical earthquake model with moving boundary 497

Using a moving boundary condition we could eliminate
all boundary effects. We first observe that the avalanche
size distribution of this model follow excellent finite size
scaling. Further, the recurrence time distribution was
analyzed in two ways, i.e., using Corral as well as BCDS
scalings. We observe that our simulated data of the RTD
support both scalings very well which leads us to conclude
that the mean recurrence time is actually a joint function
of both the system size as well as the avalanche size cut-off
as used to measure the waiting times.
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